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ABSTRACT:It has always been a challenge for researchers to efficiently and accurately post process 
experimental data which is distorted by the noise. Superconducting microwave devices e.g. resonators, 
directional filters, beam-splitters etc. operate at frequency of several GHz to THz and temperatures well 
below critical temperature (Tc) with few exceptions like transition edge sensors where devices are operated 
at temperatures close to Tc. These devices are measured usually with vector network analyzer in terms of 
scattering parameters.Vector network analyzer has a base on mature technology which has seen many 
developments after its first use, more than half a century ago. With all the break troughs in electronics and 
cryogenics, the measurement tools still have three kinds of errors i.e. systematic, drift and random errors 
causing headache to the researchers and scientists at times. Two of these errors, systematic and drift, can 
easily be removed from the measurements taken with VNA. However, random errors are not easy to 
address and remove due to their unpredictability and randomness. In this manuscript we will present an 
algorithm to post process experimental data to cope with measurements that have been corrupted or useful 
spectral response is buried in spurious signal. We have developed a robust and efficient algorithm, 
implemented in MATLAB, to detect peaks in spectral response, remove baseline andfinally estimate 
parameters of two-port superconductor resonator using an Improved Nelder-Mead Method for 
unconstrained multidimensional least square minimization.The algorithm has been successfully tested and 
verified by processing spectral response of half wavelength microwave transmission-line resonator 
successfully isolating resonator response from noisy background. We were able to compute loaded quality 
factor, resonance frequency from response data with high reproducibility even from those experimental 
data sets where resonance spikes were hardly visible. 
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I. INTRODUCTION 
We have introduced a Robust Peak Analysis Algorithm 
(RPAA) which provide a mean for quantitative baseline 
estimation numerically from spectra which is a mixture of 
sharp features (high frequency peaks) and continuous, 
slowly varying (low frequency) baseline. Though, we have 
used RPAA to post process spectral response of 
superconducting microwave resonators but it can be 
employed to any spectroscopic studies owing to its 
robustness and general applicability.  
There are, certainly, various methods to remove the baseline 
from spectra, for the reason that the problem of noisy 
spectral data is omnipresent within spectroscopy. It is usual 
practice, when high accuracy is not desirable, to remove to 
the baseline modestly ‘by eye’. Inherently, this method 
doesn’t have anything wrong with it; however, for a 
mundane task of baseline estimation, numerical tools are 
valuable which not only minimize the user interference but 
also ensure reproducibility. The knack to deter the peak 
intensity quantitatively and peak shape information is, 
generally, restricted by the underlying baseline deterrence 
and under these circumstances numerical techniques are 
clearly unavoidable to estimate and remove baseline. 
There is sparse work addressing post processing of 
resonance data of microwavetransmission-line resonators 
(MTR) recorded by VNA. The available literature on peak 
data analysis is dispersed across diverse research fields 
including analytical chemistry [1], nuclear physics [2], X-
ray and mass spectroscopy [3], nuclear magnetic resonance 
(NMR) spectroscopy [4] and medical research [5]. In 

reference [1], some general approaches for 
baselineestimation are comprehensively described. A widely 
used approach for baseline estimation is to establish a 
function by taking into account only those regions of 
spectrum comprising baseline solely, and then, interpolating 
the estimated baseline function in the regions of spectrum 
where peaks exist. This approach is called ‘automated peak 
rejection algorithm’ [4]. Other well-known methods include 
digital filtering [3], principle component analysis [6] and 
maximum entropy methods [1]. 
The RPAA employs robust local regression for baseline 
estimation, extract peak shape parameters efficiently fitting 
a priori known peak model using Improved Nelder Mead 
Simplex (INMS) [7] method in least square sense. Briefly, 
the attributes of the RPAA are; 
1. It relies on local regression method which takes into 
account measurement errors effectively. 
2. It has flexibility to address variety of peak analysis 
problems. 
3. The human interventions are reduced in contrast to other 
known methods. 
The manuscript is organized as; in section II, details on 
baseline estimation using robust local regression method are 
given. Section III contains INMS method details used to 
estimate the peak shape features. Finally, results and 
discussion are given in section IV followed by conclusion. 
II. BASELINE ESTIMATION 
We start by differentiating local and robust estimation from 
well-known least square fitting. In particular, our focus will 
be on locally weighted scatter smoother (LOWESS) 
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introduces by Cleveland [8] which is employed for baseline 
estimation in RPAA. 
Let a predictor variable p corresponding to a response R. We 
can write it as a data set (pi, Ri), such that i=1, 2,…n. 
Relationship between pi and Ri may be established by 
regressive fitting of data. The difference of two, data and 
regressive curve, is treated as noise. 

 (i = 1, 2, …, n),   (1) 
Second term on right side is known as random error and 
often considered independent and symmetrically distributed 
i.e. they have zero mean and variance σ2. Least squares 
approach remains most successful estimation technique in 
case regression curve has known form up to unknown 
parameters θ = (θ1, …, θq)T. 

,  (2) 
The functional form of regression curve, g in Eq. (1), is not 
always predictable. However, if g can be considered smooth 
function, locally linear regression model can also be applied 
for estimation. In this method, regression curve g(p) is 
considered to be linear in sufficiently small vicinity of a 
given point p0 and baseline is then approximated by 
applying least-squares technique. In addition to local least-
squares problem, a weight scheme can be incorporated 
through which influence of data points can be altered in 
proportion to their distance from p0. 

,

      (3) 
Here,  is kernel weight of  which is nearly zero 

far from . The precise form of K marginally affects the 
estimator’s performance, both theoretically and empirically 
[9]. Thus, weight kernel is chosen on the basis of 
computational ease. Robust local regression uses tricube 
weight function which smoothly descends to zero away 
from the neighborhood of  defined by , contrary to 
Gaussian that normally has nonzero tails beyond . 

,   
 (4) 
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Figure 1.Different weight kernels in arbitrary coordinate system. 

 
Figure 1 shows a comparison of several weight kernels 
which can be used in accordance with the needs of the 
problem. Usually, RF response of superconducting 
resonators measured with VNA contains high frequency 

fluctuations (need to be filtered out) superimposed on to low 
frequency smooth background, which we would refer to as 
baseline from now on. The baseline is estimated 
aftersmoothening of high frequency kinks in the measured 
signal. Tricube kernel is a natural selection in current 
situation as it effectively incorporate neighborhood points 
and give less weightage to outliers ensuring that the peak of 
interest is not affected by the process of baseline estimation.  
The value of h in equation 3is very crucial, as if its value is 
enormously small, the resultant estimation is effectively 
interpolation of data points, while, very large value of h 
results in, essentially, a globally linear regression solution.  
Local regression method given by equation 3 is sensitive to 
outliers and make it difficult to distinguish between intrinsic 
features of data i.e. peaks or jumps and systematic outliers. 
Onepossible approach, however, is to evaluate local least-
squares (equation 3)to estimate g(p) initially and assign 
residuals of this fit to robustness weights, , 
determined by Tukey’s equation (equation 6), to every point 
(pi, Ri) such that points with small residual get larger 
weights and vice versa [10]. The regression curve can then 
be calculated by weighted least square fit (equation 5) and 
repeated iteratively to convergence with  always 
determined from previous iteration.   

      (5) 

    (6) 

Where . The parameter bin equation 6 defines 
degree of process robustness i.e. how strongly the fit is 
influenced by outliers. A careful analysis is required to 
choose bsuch that useful data (Peak) is not smoothened out. 
We have made our coding flexible in selecting valueof b 
(Cleveland chose b=4.05) which we call R-Parameter which 
is inversely proportional to b. Implication of this change is; 
it makes LOESS method more robust, efficient and allowing 
very noisy data to be processed. This is the only parameter 
where user can intervene to change the degree of robustness 
to meet the desired accuracy in baseline construction i.e. 
estimation of g(pi). Further details on R-Parameter and 
effect on g(pi)estimation will be discussed in section-IV. 
In order to implement the LOESS method, we need to 
specify scale parameter (σ) which conveniently can be taken 
as experimental noise. In some experiments, we do know σ a 
priori. However, if it is not known, we can estimate it using 
the median of absolute values (MAV) of the residuals [10]. 

    (7) 
We can summarize the baseline estimation process as under; 
• If the g(pi),calculated using equation 3,4, of a point pi is 

smaller than the weight kernel, then the intensity of 
corresponding point on g(pi) equals the intensity of pi. 
• If the intensity of a point is larger than or equal to the 

weight kernel, then the intensity of correspondingpoint on 
g(pi) equals g(pi). 
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• Baseline is obtained by applying local regressionfitting 
to the predictor(equation 5, 6). 
• Process can be iterated to achieve convergence. 

III. INMS METHOD 
Once we have clean, baseline rectified, RF response data of 
planar resonators we are required to estimate resonator 
characteristics i.e. quality factor (Q), resonance frequency 
(f0) etc. Resonator response is usually characterized by a 
Lorentziancurve especially when resonance responses are 
very weak. 
In this section, we shall briefly describe INMS method for 
unconstrained parametric optimization of modified 
Lorentzian function given by [11]; 

   (8) 

Here a1is amplitude at resonance, a2 corresponds to Q of 
resonator, a3represents f0, a4 is slope and a5 offset.ai; i=1-5, 
are parameters we are aiming to optimize using INMS. First, 
we will summarize Nelder Mead following original paper 
[12] followed by modifications by[7]; 
1. Get α (contraction), β (reflection) and γ (expansion) 

coefficients, chose initial simplex with random vertices 
x0, x1,…, xn alsocompute corresponding function values 
f0, f1,…, fn. 

2. Sort the vertices so that f0, f1,…, fn are in ascending 
order. 

3. Compute the reflection pointxr, fr. 
4. if f0 >fr: 

4.1. calculate the extended pointxe, fe; 
4.2. if fe< f0, substitute the worst point with 

extendedpoint i.e. xn= xe, fn= fe; 
4.3. iffe> f0, substitute the worst point with 

reflectedpoint xn= xr, fn= fr. 
5. if f0 <fr 

5.1. iffr< fi,substitute the worst point with reflected 
point xn= xr, fn= fr. 

5.2. if fr> fi: 
5.2.1. if fr>fn: calculate the contracted point xc, fc; 
5.2.2. if fc >fn then contract the simplex; 
5.2.3. if fc <fn, substitute the worst point with 

contracted point xn= xc, fn= fc; 
5.3. iffr<fn: substitute the worst point withreflected 

point xn= xr, fn= fr. 
6. if the stopping criteria not met, the algorithm will 

continue at 2. 
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Figure 2. Simulated forward scattering of a λ/2 microwave 

transmission line resonators (MTR) and Lorentz fit. 
 

Nelder-Mead simplex method, as can be seen, is very robust 
and computation efficient method to solve unconstrained 
problems without derivative calculation. The major 
drawback, however, of NMS method is that it may not 
define its moving directions well enough just by simple 
geometrical movements in high dimensional cases. 
To maintain this simplicity, one quasi gradient method 
presented by Nam Pham et al. for gradient approximation of 
a function. This method involves an extra point created from 
a simplex to approximate gradients. It approximates 
gradients of a (n+1) dimensional plane created from a 
geometrical simplex. By approximating gradients of the 
plane, gradients in the vicinity of a simplex can be 
approximated. A comprehensive detail of INMS 
modification steps can be found in reference [7]. 
INMS is essentially a direct search iterative method whose 
efficiency of convergence largely depends upon initial guess 
of parameters needed to be optimized. Now we will make a 
note on initial guess parameters involved in equation 8.Let 
y(x) be the real part of complex RF response of resonator 
where x is frequency and baseline is estimated and 
subtracted according to method described in Section I. 
Initial guess for offsetis evaluated as; 

    (9) 

In equation 9,  are averages of first and last 
ten data points of y, respectively. 
Similarly, are averages of first and last ten 
points of x,respectively. The slope can be approximated as; 

     (10) 

Peak height a1 and position of peak,f0 = a3, can be easily 
found using MATLAB built-in functions. 
ሾa1, indexሿൌ maxሺyሻ;        ሺ11) 
a3ൌxሺindexሻ;          ሺ12) 
The only parameter  left so far  is a2 which corresponds to 
Q of the resonator which is equal to f0/fwhm. The fwhm is 
full width at half maximum of the peak which can be 
calculated using MATLAB function fwhm.m and we get a2 
as follows, 
a2ൌa3/fwhm          ሺ13) 
We can summarize the algorithm as follows; 
1. Use equations1-7 for baseline estimation and subtract the 
baseline from original measured data. 
2. Use equation 9-13 to get initial values for model 
(equation 8) parameters. 
3. Fit the model (equation 8) to refined experimental data 
from first step using INMS method in least square approach. 
4. IV. IMPLENTATION AND RESULTS  
In this section we will see how the robust technique, 
described in previous section, work with some 
experimentally recorded data. We have implemented the 
RPAA in MATLAB which is very useful owing to its built-
in capabilities of direct data acquisition from network 
analyser, analyse data immediately without hassle of saving 
and importing into MATLAB at a later time, making 
spectral analysis straight 
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Figure 3. Measured scattering parameter: a) shows the original data 
b) Recovered peak using Peak finding algorithm (PFA) described 
in section-2 c) Modelled baseline fitting to extracted peak and d) 

shows Lorentzian fit to corrected peak. 
forward. Further, programming capabilities of MATLAB 
allows automated data analysis of huge amount of data very 
quickly. 
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Figure 4.Measured scattering parameter of same device as in figure 

3 but different experimental conditions resulting in different 
background noise. 
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Figure 5.Case of even more worse background random noise. 
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Figure 6: R-parameter value effect on extracted peak. a) Shows 

measured data, (b), (c), (d) showing recovered peak with R-
Parameter values of 0.01, 10 and 15, respectively. 

Algorithm has tendency to find peak even when global 
minimum/maximum is not evident in the displayed data. 
With the default parameters of robustness of 
RPAA;peak,which is 10% of any noisy signal can be 
retrieved. This can be tuned in accordance with data to be 
analysed. A higher value of robustness parameter will result 
in losing small peaks in data but making peak extraction 
quicker. However, a very small (<1%) value is not always 
beneficial as it may result in false peak detection (see figure 
6-b) along with excessive computation cost and very large 
value (<10%) can mess up peak propertiesas can be seen in 
figure 6-c and 6-d where peak height and width has been 
altered effectively to give wrong information.  

V. CONCLUSION 
In this manuscript, we have presented a method for post 
processing of a noisy peak data. We have successfully 
implemented the algorithm in MATLAB and tested on real 
time MTR device’s response recorded by VNA. The success 
rate of peak retrieval we have attained is quite high (a spike 
of the order of 1 mV in slowly varying noisy background 
can be extracted. See figure 3) and peak parameter 
estimation accuracy is up to six decimal places which is 
default value to fit equation-8 to extracted peak using 
modified INMS described in section 3.  
In the future work we will investigate the applicability of 
method in other areas of research where peak analysis is 
extensively required e.g. XRD, mass spectrometry, bio-
informatics etc. Further, a comparative study of the method 
developed with other commercial tools of data analysis will 
also remain an area of interest. 
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